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Abstract  Epistemiology requires trans-disciplinary 
logics for convergence. Here a logico-geometrically 
expanded cyclical version of the classical French 
temperamental and anxio-affective thought-action-mood-
model, “dyn4-TAM-cube”, harboring Appropriation Waves 
(AWs), encounters an effort-related node of present 
neuro-economical debates: the cyclical relation between 
“value” and “worth”. Accordingly, as a fundamental of the 
brain, this essay’s second part continues to explore the 
alternation between symbolic frontal 4-dimensional (Halford) 
processing (“4D- Thought”), and high-dimensional parietal 
(Rizzolatti) intel- lectual intuition  (“5D+-Action”), as 
balanced according to Richard Sorrentino’s prime motivator 
trait (Un-)Certainty Orientation (“UO-versus-CO”) 
interacting with “Mood”. The two mentally processed 
transitions between these low- and high-dimensional 
domains, “4D-T~” and “5D+-A~”, are complexity-reductive 
Perception P{AT} and -expan- sionist Intention 
(I{TA}), from which two kinds of lear- ning feed into 
“4D-T~” for decision. Specifically in early AW the not just 
predictive, but incentive among Pavlovian cues putatively 
promises discounts in effort which foster intentions for 
worth-appropriative moves: I{TA}. As “UO-versus-CO” 
to date seems homologous to the more sign- or more 
goal-tracking dimension (“ST-versus-GT”) in rats. Since ST 
is controlled by the thalamic paraventricular nuclei and GT 
e.g. by the hippocampus, putative intruding mast cells might 
cause the depressive reversals in orientation, establishing 
mast cells as bio-economical agents. 
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1. Introduction 
The second part of this essay [2] proposing a more 

integrated and developed classical framework related to 
temperamental and anxio-affective “appropriations” in 
recurrent sequential waves, and attracted by permutated 
states, “dyn4-TAM-cube”, (see abbreviation codei), provides 
an encounter with currently rapidly unfolding convergent 
neuro-economics. 

2. Interfacing 4DT~ and 5+DA~: “Value” 
and “Worth” 

The opposite cognitive attitudes in facing unexplained 
complexity, which manifest as opposite human performan- 
ces [1], in the dyn4-TAM-model [2] occur at the interfaces 
between low- and high-dimensional processing. The present  
proposal states, that in analogy to uncertainty-oriented 
humans (UOs), sign-tracker rats (STs), after engaging in the 
“perception of value” P{AT}, perform vigorously in 
exploring anticipated potential discounts in effort, and se- 
condary advantages in exchange of values, and goal-track- 
er-rats (GTs) instead in the “intuitive intention of worth- 
appropriative moves” I{TA}. Where the former sangui- 
nics excel in reducing complexity, and thereby hopefully ef- 
fort, into more sophisticated models of appropriation, the 
latter cholerics excel in keeping or expanding complexity. In 
order to substantiate this claim this convergent review aggre- 
gates more detailed structural analogies as a first step to 
hypothesis-testing. 

Such temperamental variety, as other intra-group diversi- 
ties [3], may favor fitness of groups and societies´ welfare [4] 
and are at the core of conflict and cooperation. 

Such value/worth-dualism also complies with the old 
stance, that the market value “exchanged (…) is the quantity 
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of labor (…) commonly taken in producing them.” [5]. 
Labor in the individual appears as “effort” - as reflected in 
e.g. tonic extracellular striatal dopamine [6]. Thus abstract 
value represents production costs, which ultimately consist 
of e.g. human effort. 

This duality appears as biologically hard-wired. The phy- 
logenetically newer anterior lateral OFC processes such ab- 
stract (monetary) “value”-rewards [7,8], which overcome 
subjective effort as incentive appetite probably signaling the 
opportunity of unusual bargain, while appropriated “worth” 
results in anticipatable, utility- reflecting affective “hot-spots” 
[9]. Hereby even the temperamental shapes of “utility” 
curves seem to be accounted for, yet “value” and “worth” are 
commonly considered as interchangeable [10]. 

3. Dual vs. Mixed Motivational Updates 
Reward prediction error (RPE) signals, which update 

about the reliability (“precision”) of cues (for opportunities), 
were first discovered in midbrain dopamine (DA) neurons [8, 
11-13], and then in additional sites including - for punish- 
ment - the habenulae [14], striatum – also in humans [15]. 

The scope-specific single-step updating via eligibility- 
targeted plasticity [11] accordingly is not a backward 
modulation, albeit still connected to specific needs. In fact 
pairing a CS(1) first with US(a) and then with US(b) is 
equally effi- cient for appropriative action, but blocks 
learning from a new CS(2) about US(a)i. Rather than 
supporting an additional Konorskian general activation [16], 
such a block, deviating to another US(b), would allow to 
stick to an established joint cue about less effort in 
appropriating both. 

A recent simulation [17] of sign-tracking (ST) 
underscores an antegrade capacity of the cue to reawaken a 
reward pertinent to a need, which then engages in a second, 
interre- lating process. The niche-dependent relative efficacy 
of goal- or sign-tracking is not considered and these “rewards” 
are added and not multiplied. 

Only the reminder that appropriations are motivated by 
two processes [18], which in dyn4 occur at “Intention” and 
“Perception” interfacing between 4DT~ and 5+DA~ (Figure 
1), which therefore ought not to be collapsed, seems to 
clarify several neuro-economical issues. 

4. Disincentivizing at the Interfaces 
Besides cognitive efforts, and many other intricacies of 

motivation [19], motor efforts impact future “rational” best- 
reward-for-least-effort-choices and subjective evaluations 
(like regret) through a same network. This correlates with 
reward and inversely with effort and involves SMA, itself 
corresponding to avoidance, and dorsal ACC’s caudal por- 
tion for calculating motor costs. Not decision for action, but 
seeking of reward is activated by the vmPFCi [20]. 

As dissociated appear the shape and site of the action- 
devigorating impacts a) of expenditure of effort, which is 
lesionable at the ACC (in the cortico-subcortico-tha- 
lamo-cortical circuit, CSTC, for 5+DA) or by unilateral sites 
of mPFC in rats [21], and b) of delayed reward, which is 
lesionable at OFC (in the CSTC of Mood) [22]. While ACC 
and the anterior insula (aINS) perceive, P{AT}, efforts 
[23] from 5+DA, delays might allow worries about extra ef- 
forts (4DT), to dis-incentivize, less I{TA}, at the ventral 
striatum and the vmPFC. At least for STs effort-related 
fatigue usefully prevents further losses by stopping 
exploration of tempting cues [24]. 

 

Figure 1.  The cycle alternating 4D-Thought and 5+D-Action, as 
illustrated through the “Thinker” and “Marcher” by Auguste Rodin, hides 
Appropria- tive Waves (AWs). At its first transition of Perception of 
external and internal feedbacks from effected change, some signals become 
contingent reward-x-specific cues, A(cue(Rx)), inspiring the early AW. 
Some of these become incentive cues of a different kind, which hint to a 
learned discount in the expected appropriative effort (F). Intention urges for 
action when the expected cost, felt as effort (F), is expected to be more than 
matched by the perceived reduction of Need by reward Rx as 5+D-Aint(N- 
Rx ). 

Less effort as a negative reinforcement might provide a 
further “facilitation of a specific form of neural computation 
that results in conditioned approach behavior” also by meso- 
limbic dopamine, which here would not act as an anticipator 
of reward [25]. 

The principle of least effort also guides many decisions 
when building Intentions (I(TA) to act. As a loss-minimi- 
zing strategy – under interacting conditions of exhaustion 
and scarcity [26] – it is computed at the frontal pole as effort 
under risk [27]. In dyn4 cues instill “Hope” to over- come the 
effort (transition “e” in part 1, Figure 3). Maximal own 
expendable specific need-proportionate effort (”Effme”) 
therefore remains a crucial ceiling parameter, and the inverse 
of “value to me”. 

While decisions localize to the OFC, foragers rapidly 
adapt their means or goals to changing surrounds through 
such a function of possible maximal effort and attainment 
through least effort, i.e. of “resources and opportunities.” 
Herein the dorsal ACC [28] and the posterior cingulate cor- 
tex may at times signal the “pressure to pursue unlikely choi- 
ces” – preferred by uncertainty-orientated STs [29]. 
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5. Prediction of less Effort or of Reward 
The ubiquitous “reward prediction error” (RPE) in most 

current accounts (but not in all experiments) could probably 
be smoothly replaced by a RPE normalized into 
RPE(-∆%Effme)i through multiplication with a ratio expres- 
sing the reward-specific maximal expendable effort, integra- 
ting past specific expenditures and regrets, and also the 
present “energetic state” [26], divided by the presently anti- 
cipated, at times negative, discount, as indicated by incentive 
cues. 

The perception of the cue is temporally closer to the evalu- 
ation of anticipated effort, and therefore more easily associa- 
ted with it, than the outcome in terms of utility („worth”), 
apparent only after consumption. This worth divided by 
recent effort answers to the question “Was it worth the 
effort?” - risking regret [31] and updates the net RPE [32]. 

5.1. Common and Individual Economic Comparison 

The need for comparison of rewards, often without a 
“common quality”, calls for a ranking on a “common scale of 
values”, on which the encoding of the RPE as “subjective 
value” is proposed as a, questionably, “ideal way” of steering 
economic decisions [31]. This “value” in reality though, as 
we can see, is a variable composite of worth (utility) and, at 
times incentive, value (effort), which is hidden behind of- ten 
dichotomic decisions. The variation of rewards in only one 
attribute is said not to allow the “isolation” of subjective 
preference - as far as sooner, more certain, and more should 
be preferred as better [31]. But beyond this we want what we 
like at discounted objective and subjective effort, thus the 
RPE changes to the residual RPE(-∆%Effme). 

The closing e.g. consummatory end of the AW perceives 
the feedback P{AT} from 5+DA-led actions through 
evoked external and internal reactions, and activates instru- 
mental learning. The update of RPE(-∆%Effme) in 4DT~ 
instead learns from spared, or increased, momentaneously 
anticipated effort, not from outcome [8,11]. 

Accordingly ventral striatal neurons signal “reward” or 
rather RPE(-∆%Effme) before the rat's decision, the OFC 
only afterwards. 

In market economics goal-specific objective effort, being 
the essential aversive variable related to appropriation, can 
be called “value”, and sellers initially cash in on unaccusto- 
med economies in effort since hereby they can buy “any” 
good representing more effort (value) with less effort, which 
on average holds true after transformation into subjective 
residual value represented by RPE(-∆%Effme). In dyn4 this 
momentaneously advantageous (positive) reduction of value 
figures as perception of a resource-saving cumulative 
1-D-index of net appropriative experience relevant to the 
early AW-module Worry-T~/a~/m~. The dynamics of ac- 
tions and the individual utility of things and services 
(“worth”) instead attain to (5+D-)Action.  

That such acquired evaluative neo-Pavlovian “reflexes” 
obey to a ceiling of effort may find support in the resurrection 

of memory and learning in the study of primary sensory 
cortices [31]. It also seems even compatible with the various 
trait-like marginal utility curves [31] generated from “ratio- 
nal choice” via the unlikely “definition of value” as that from 
which “one can’t get enough of” [11] in the pure monetary 
form. Nor anything formally scrunches thereafter when 
“utility is taken to be correlative to (…) want” - or by col- 
lapse with “worth” - what “a person is willing to pay” for 
satisfaction [33], in some other currency. Finally, since UOs, 
and presumably STs, are attracted by the unknowns of com- 
putable risk calling for modeled discounts in effort, they can 
be expected to enjoy the pure unsaturable monetary shape, of 
which imponderable worths only cause impure inflections. 

5.2. The Divisionary Focus of Habits 

This dualism of processing styles, here reflected through 
“UC-CO-orientation”, is primarily non-habitual and thus 
different from the two “systems”: either “quick, intuitive, 
and effortless” or innovative “slow, analytical, and delib- 
erate“ – thereby “overcoming intuition.” [34]. In dyn4 these 
map to, at first non-habitual, intuitive ways of 5+DA and to 
more conscious symbolic processing in 4DT, often strugg- 
ling with what it perceives (AT) of the complexity of 
5+D-Action and reaction. 

Such model-based learning (MBL) besides the testing of 
hypotheses by relational thinking nevertheless also involves 
more Gestaltian [35] 4D-pattern searches, than even intrac- 
tably costly searches through trees [36]. 

5.3. When Scare Prefers Grasp over Model 

Only the dorsal ACC and the aINS [37] related to 4DT~ 
and M~, not the parietal cortex for 5+DA, harbor the highly 
intuitive rapid Von Economo-spindle cells [38], which might 
have a role in the reductionist grasping “Thought-about- 
Action” I{TA} that provides newly adaptive fast-and- 
frugal heuristics. Such prove successful under both habitual 
and erratic circumstances [39] and are triggered by often just 
one cue providing “model-free” learning (MFL). Un- 
explained adverse complexity via input from locus coeruleus 
can block experienced model-based functioning in the ACC 
in favor of such erratic behavior, whereby, at times “natu- 
rally” simple-minded CO-actors [1] become as unpredic-
table as their surrounds. 

5.4. When Modeling Becomes Useful 

Yet when routines stop working, UOs are needed for their 
renewal. Then even the liking system adapts: once cake is 
lacking you’ll like bread! (Un-)Certainty-orientation theory 
[1] shows, that the related affective valences (M~) cannot be 
taken for granted, but reflects a stable cognitive trait. 

The Uncertainty- oriented (UOs) are enabled to maintain 
the effort required for the conceptual reduction of the com- 
plexity of reality by their higher threshold for cogniti- 
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ve-effort-related dysphoria, and by their, at times even high 
intellectual pleasure, Flow [41] denoting the process from 
Bliss to Interest in dyn4. 

The Certainty-oriented (COs), being unblessed by oppor- 
tunity-optimizing modeling tasks, instead use rapid reductive 
“chunking” into essentially simple commands, to govern, 
intrinsically complex (!), habits. 

While lack of mental flexibility can lead to apparent CO, 
this usually comes with some loss of intelligence, which is 
not a feature of COs [1], but rather due to disturbances at the 
medio-dorsal thalamus [42]. The focus on such cognitive 
efforts presently rejuvenates psychiatry [43, 44]. 

5.5. Collapsing Duality by Arithmetical Lumping 

One account of the ST-problem [36] avoids this double 
character, or “disunity” [45] of “value” or “worth”, by pro- 
posing a halfway mixed dual system, whereby the STs are 
judged by the standards of the cage to be underperforming. 
MFL through sequential “hot-or-cold”-attempts, here repre- 
sents “both habits and incentive salience” of Pavlovian 
“reflexes”, while tree-comprehensive permutational, alias 
model-based, 4D-T-learning (MBL) supposedly relates “to 
goal-directed valuation, be it instrumentally or in Pavlovian 
settings”. This commixture, ensuing from a crude reduction 
of intentional planning, cannot represent habits as entrench- 
ment of instrumental learning nor decide the issue. 

5.6. Mood Interacts with Attitude towards the 
Not-yet-explained 

When it comes to positive, or negative, affect, what is 
interesting therefore is, that in the COs the valence of M~ 
decreases with increasing 4DT~, whereas the UOs enjoy 
intellectual adventure proportionally [1]. Actually M~ 
interacts with (Un)-Certainty-orientation: while UOs or COs 
are defined under the premises of a longing for “maxi- mal 
achievement”, under the clinically depressive premises of a 
minimization of further losses, the two extreme types, at a 
certain point of prudence, switch into their mirror cognitive 
style [46, p.6]. Rats who have lost goals [47], or which know 
them for longer [48], switch from GT to ST, and certain 
“animals shift their preference from stable to variable food 
sources under (…) increased physical effort or falling 
energetic(s).”[26]. Furthermore both orientations gain with 
high spirits, which steepen their opposed regressions. 

Yet the yet-to-be-explaineds in foraging become dramatic 
only on arid, not on lush meadows, so at the end of despair 
COs, after transient UOs-ness, would become COs again, 
sticking to live-saving solutions. Yet goal-tracking rats (GTs) 
with empty pots would start searching farther away than 
desperate STs. 

Teasing through contextual unknowns increases ST 
further [50-52], maybe because then cues signal lesser efforts 
unreliably [53]. Tracking-attitude may also depend on status, 
which is partly inborn: Dominant members often eat first and 
submissive members are more successful if they use 

innovative hypotheses, i.e. if they look more out for cues, 
than for the food proper, since in the first case they may eat 
unnoticed by the dominants, while in the second case, they 
may end up only knowing where the food is others eat. 

5.7. Hiding Circularity 

The circular account is obviously lacking in the recent 
Bayesian “Active Inference” model, which seemingly solved 
circular explanations of “reward”, whereas this circularity 
just mirrors the essence of AWs informed by attributes of 
homeostasis or growth and as such should not be solved. The 
model in fact makes unpredictability, precision and salience 
collapse into “Active Inference” or what midbrain DA 
supposedly codes for, conveying how (active) “perception 
minimizes exteroceptive prediction errors and action mini- 
mizes proprioceptive prediction errors.” [54]. The model in 
fact reflects the again truly marvelous discovery, that certain 
dopamine neurons under conditioned stimuli proportionally 
code for unpredictability of reward [55], but unpredictability 
unduly replaced reward and salience, whereas reality is more 
complex [13]. 

At least in the cortex response variability furthermore 
seems not be a solid foundation, since any stimulus causes its 
decline [56]. Albeit unpredictability, precision and salience 
determine the value in finance industry, they do not account 
for all facts in the life of rats. 

6. Mast Cells, Histamine, and Thalamus 
Mast cells (MCs) enter the brain during development, and 

these cells are replenished [57] or augmented by additional 
MCs which rapidly immigrate upon signals, which reflect 
social events, germs, drugs or physical changes [58] or, why 
not, sexual rubbing. Cerebral MCs are usually found to be 
scarce, yet most densely present at the thalamus, the habe- 
nulae, the olfactory bulb, and within the meninges. Via the 
braking habenulo-mesencephalic loops [59] MCs guard the 
blood-brain barrier [60,61] or trans-granulate into neurons 
[62], and thus probably modulate incentives. 

The perivascular access to the parenchyma of these sites 
is wide open in the subcortical [63], but obliterated in the 
cortical locations. The induction of MC degranulation in the 
thalamus of rats caused excitation (70% in females, 11% in 
males), or inhibition (7% in females, 33% in males) of thala- 
mic neurons [64]. Positive affect accompanies the behavioral 
invigoration triggered by MCs under several social circum- 
stances, e.g. during courtship [65] in the medial habenulae. 
Female rats after cohabitation increase thalamic MCs within 
the medial geniculate and four other thalamic nuclei [66], 
whereas in mice not thalamic, but meningeal degranulation 
of MCs correlates with wakefulness and stimulatory tone in 
the CNS [67]. 

6.1. Mast Cells and Thalamo-frontal Driving Feedbacks 

Dominant thalamo-frontal influences have been reco- 
gnized in several domains [68-70]. These occur within the 
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largely segregated, and thus dimensionally orthogonal, 
CSTCs [71], wherein cortical inputs to the basal ganglia are 
conveyed back to the cortex via the thalamus. Several of the 
many MC mediators [72] and effects could plausibly modul- 
ate the thalamus. While within the CSTCs the striatum is dri- 
ven through glutamate by plentiful excitatory input from the 
PFC, and by thalamo-striatal connections, MCs intriguingly 
only potentiate excitotoxicity via histamine (HA) [73], but 
are not glutamate-releasers, while requiring it for degranula- 
tion [74]. 

Nevertheless HA, commonly of MC origin, selectively 
potentiates N-methyl-d-aspartate receptors (NMDARsi) 
allosterically on a magnesium-sensitive NR2Bi-site [75] also 
involved in hallucinogenicity [76]. Such an increase of glu- 
tamatergic activity could plausibly impact on the function- 
ning of CSTCs. While brain HA was normal in mice defi- 
cient in MCs, HA in rats was shown to stem from MCs up to 
90% in the thalamus and to half in the brain [77]. The latter 
findings presumably also reflect a more activated state of 
MCs, wherein large amounts are secreted. Rat cerebral MCs 
were nearly all thalamic and specifically found in three areas 
and in the sign-tracking-related paraventricular nucleus of 
thalamus (PVT) [78]. 

6.2. Mast Cells as Agents with Destination and Destiny 

It is tempting to investigate, wither cohorts of MCs, after 
peripheral priming of destination and destiny, would often 
migrate to the brain, where they would lastingly influence 
subcortical and cortical modules. In the striatum they interact 
with perivascular nerves, which are the fastest first respon-
ders for midbrain DA [79], or with cells of the neuro-vas- 
cular unit. Thereby physiological inflammatory processes 
could be pushed beyond temperament to “affective tempe- 
raments“ [80], anxio-phobo-affective diagnoses or to soft, 
yet often deteriorating, bipolar mixed states [81]. 

Specifically the depressive switch into opposite tracking 
or (Un-)Certainty [1,46] mode could be modulated by MCs 
primed to cause “depression” (instead of hypomanic lesio- 
nal “vigor”) when reaching the PVT, via the thalamo-perfo- 
rate and thalamo-geniculate arteries. 

The PVT in any case achieves its importance for cue-re- 
ward pairing through its broad subcortical and prelimbic 
cortical afferents and glutamergic efferents [82]. 

7. Scopes and Outlooks 
The achievement of logically expressed convergent high- 

quality research is a daunting task, especially if practical 
clinical utility remains a goal. Huge global projects like the 
Research Domain Criteria (RDoC) initiative are under way 
[83], which astonishingly removed movement from the 
classical triad [84]. Furthermore especially the 
understanding of intrinsically dimensional topics, e.g. of 
CSTCs providing dimensional data, seems relevantly 
hampered by the habitual avoidance of direct acquisitions of 

“unplugged” i. e. intact patterns, conservable e.g. through the 
Configural Frequency Analysis of Gustav Lienert [85, 86]. 
This intriguing neglect could be related to UC-orientation 
[87]. 

This essay, which takes advantage of the author’s tiny 
context, strives to contribute a sketch of an anxio-affective 
framework for such convergence to epistemiology and cli- 
nical talk alike, dyn4 being also progressively expanded to 
dyadic or family system relations. The essay focuses on an 
Aristotelian geometric classically triadic dyn4-T-A-M- 
model newly interpreted as contrast between private low-, 
and public high-dimensional processing. The comprehen- 
sive AW, as inscribed in the cube and attracted by its di- 
chotomic permutations, apparently has not been proposed as 
the basic sequence of behavior before. 

7.1. Triadic Models in Clinical Psychology 

An entwined “adolescent” triadic model [88,89], which 
centered on maturing balances of self-control [90], had in- 
stead cut across the T-A-M-dimensions in a not comprehen- 
sively orthogonal way. It generated a three composite factor 
balance between a) a mainly subcortical cognitively (actually 
movingly) impulsive non-delaying approach driven by re- 
ward, stemming even from “risk taking” (Joy-t~A~M~), b) a 
prefrontal cognitively reflected overall control (T~), and, 
beyond “dual systems”, c) an amygdaloid emotionally 
deranged avoidance (a~, m~). All the same e.g. it doesn’t 
accomodate amygdalar salience or striatal expectancy [91] 
or the affective temperaments [92] well - nor the “inextri- 
cable” “interactive dexterity” emerging from studies, not al- 
lowed to be constrained into mechanistic orthogonality [93], 
albeit maybe just this would support the sought indepen- 
dence from valence, besides providing systematic complex 
predictions amenable to non-tautological falsification. 
Classically triadic instead is the influential associative, 
sensori-motor, and limbic tripartite division [59], albeit some 
sensations are low-dimensional. 

7.2. Are Neuro-economics “Dual or Not”? 

Intervening also into the present (neuro-)economical 
debate this essay calls for “circular” experiments avoiding 
undue “collapse” between low-dimensional “value”/effort 
and high-dimensional “worth”/utility. This is now strongly 
supported by the first localization of the positive human 
interactive “value-to-utility transformation” to the inversely 
activated dorsal anterior mid-cingulate cortex (dmPFC). The 
connectivity of this is positive with the probably uphill 
inferior frontal gyrus [94], related e.g. to perceptive “con- 
fidence” (certainty) [95], and negative with the probably 
downhill Nac providing intentional subjective “valutation”. 
Within the OFC instead “value” seems stored behind, and 
“worth” in front [96]. Others shed doubt on the necessity of 
emotions as mediators of mesolimbic dopaminergic effects 
e.g. on feeding, but explore a more abstract “facilitation of a 
specific form of neural computation” [97], maybe an 
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expansion of complexity. 
Impressive reviews of transfer [98,99] concede that de- 

spite guaranteed rewards, cues still work, whatever the 
“worth” [100], while others focus on “efforts” [101]. 
Importantly the “dual” arguments also apply when “worth” 
equals inviolacity [102]. 

By conceiving the incentivity of cues to be due to 
opportune effort-reducing and thus facilitating means 
signaled by the cue, their three [103] attributes – attractivity 
(for agent’s attention or approach), instigation of effort to 
reach them, energizing of appropriation of reward – can be 
accounted for. 

An orthogonal conceptionalization of the segregated 
albeit cortico-cortically linked CSTCs and their “intentional” 
function is maintained in some frameworks, at least for A~ 
and M~ [104], yet in a collapsed way avoiding T~. Also the 
“orthogonalization” between motricity and reward again 
avoids the duality of 4D-T~ and 5+D-A~ and just deals with 
5+D-A~ and its first derivative: in fact more experimental 
distinction of MBL and MFL is being asked for [105]. 

7.3. Habits Are Not Always Rapid or the Primary Issue 

Within the dyn4-framework, “models” are created in 
4D-T~ with cognitive effort, but incentivated by the 
perspective of a variously [106, 107] tempting discount in 
antici- pated appropriative 5+D-A~-related mainly motor 
effort, as signaled by cues functioning in such a model. 

Motor-related habits [108], albeit dopaminergically [109] 
crystallized, are still complex programs reformatted away 
from globus pallidus [110] through various processes, e.g. 
TGFβ- [111] or NMDAR- [112] activity on striatal DA-neu- 
rons. The lack of the latter glutamatergic input slows down 
learning, social contacts and forced swimming, but not 
effortful performance [113]. 

Some neuro-economically engaged clinicians say them-
selves not yet content [114] with their differently dual com- 
plexity MBL/MBF-approach contrasting “more complex”, 
“goal-directed” MBL-based behavior with alternative habi- 
tual MFL-based decision making [115]. They e.g. showed 
that rises in ventral striatal (VS) DA correlate with 
MBL-related “signatures” in dlPFC and inversely with 
MFL-related encoding in VS [115] - both being conceived as 
4D-T~ in dyn4. Their alternative habitual MBL-pro- cessing 
instead as such in dyn4 would remain “complex” as related to 
5+D-A~-Action, despite requiring less 4D-T~ re- lated 
conscious steering or being shielded from outcome- 
perceiving feedback. This delayed habitual reformatting by 
repetition may actually detract from the problems collapsed 
neureconomics encounter in mental care. 

The sufficient checking of a purportedly rapid less 
effortful intuitive system-1 (5+DA) by a more reflective 
system-2 in otherwise biased decisions, has been strongly 
complemen- ted by a core role of even less intuitive 
numerical abilities (4DT) [116]. 

7.4. Neurobehavioral Complexity Changes and dyn4 

Following dyn4 it would have to be explored wither the 
CSTCs involving the ACC assigned to 5+D-A really show a 
higher e.g. fractal dimensionality than the one involving the 
dlPFC mapped to 4D-T. In fact the dorsal ACC itself 
already produces neuro-economical [117] reductive models 
of con- flicting past and present experience [118] ready to 
feed decisions to be taken in dlPFC, linking contexts with 
appropriative, and therefore lastly motor strategies by 
producing a rich “task space” [119]. 

Since appropriation is the organizing principle in dyn4 
motricity (5+DA) is in command of secondary parietal or 
primary motor areas. Similarly the CSTC involving OFC / 
vmPFC [120], and not the “limbic systems”, represents 
Mood, as they master economical emotions [121] and 
integrate emotionally valenced “worth” to command appro- 
priations [122]. 

The CSTCs themselves being feed-forward structures 
show an about 500-fold quantitative neuronal reduction in 
“complexity” between striatum and the pre-thalamic inhib- 
iting output components. Of these the substantia nigra (SNr) 
e.g. may “gain control” over cortical feedback when sparing 
explorative efforts [123], braking “complicated” 5+DA. 
Ro- dent-primate homologies of CSTCs are many and also 
rela- ted to psy chiatric models [124]. 

The present dyn4-account also implies that the alternating 
coordination between 4D-T- and 5+D-A-processing is an 
enlightening prerequisite, beyond basic divergence and fun- 
neling, for any functional brain activity. This occurs within 
4D-T and is often dealt with as top-down attention. Recent 
theoretical shifts towards considering the dorsal attention 
network (DAN) within the fronto-parietal cortices as a com- 
mon substrate of “internal attention” sustaining as variegate 
functions as working memory, episodic retrieval of per- 
cepts, and intentionally complex mental imagery [125] sup- 
ports this crudely mechanistic prediction on a high level of 
sophistication. 

7.5. Effortful Controls of Thought, Action, Mood 

We tend to fuse the concepts of subjective effort - the emo- 
tion of cost - as the felt passive brake on expenditure of re-
sources, and again the overcoming active effort throughout 
the initiation and maintenance of effort-full processes. The 
steering of motor-costs is primordial, while the pleasure- 
systems and their hot-spots in evolution are small and mar- 
ginal [126]. In humans though the costs of emotions, like the 
one from the urge of want, and their cognitive costs can 
become predominant. Thus, besides some focus on duration 
[127, 128], mainly the cost of suppressing emotions is 
monitored [129]. Fortunately affect dynamics are taking 
momen- tum also in the case of a likely alias of increased 
emotional effort suspected to be a pre-depressive signature of 
decoup- ling from usual functional connectivity: rigid 
emotional inertia [130]. 
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These modules related to effort-ful appropriation have just 
been assembled in a formidable review [131]: The ventral 
striatum (VS) including the nucleus accumbens (NAc) 
activity likely is due to a momentaneous internal Perception 
of the opportune simple ratio of utility to effort, which 
continues when utility reaches a ceiling, helped by the 
midbrain. The VS invigorates appropriative action and the 
momentaneous changes in dopamine correlate with the 
willingness to work, which correlates with incentive cueing, 
even in absence of reward! Demanded high-effort choices, 
which need permission by the ACC, instead activates the 
amygdala, which seems to aid in encoding of relevance of 
the former inner and external Perceptions. It gives rise to 
urges, also in associative learning, whereby DA is released in 
the NAc, and the ACC is instructed to allow for high-effort 
expenditures. The amygdala overall acts as a conservative or 
investing expense controller in front of the temptations 
provided by the VS. 

The dorsal striatum plans, decides, and automatizes motor 
behavior often into habits, while it also monitors internal 
metabolic and even external nutritional ressources. As a 
result it encodes specific energetic prerequisits for appro- 
priation. Mice without DA instead die from aphagy, while 
hedonics and spatial learning of food remained intact. In 
dyn4 this preparation of Action corresponds to Intention. 
Within the dopaminergic midbrain the VTA and SNr interact 
with the striatum and thereby seem to provide the expected 
average opportunity on appropriation with the specific effort. 
Yet the amphetamine-sensitive emotional drive, as computed 
from the latter costs and delays combined with „subjective 
value“ (worth) and the variable confidence in consequential 
Intentions, is provided by the vmPFC. The ultimate decision 
is taken around the intraparietal sulcus. 

In dyn4 this corresponds to Interest or Worry leading via 
Application or Remediation to Pursuit [2, Table 1]. 

The supplementary motor areas (SMAs) monitoring 
muscle contraction interestingly feeds into subjective effort, 
while through preparedness it may invigorate response or 
maybe inversely spare effort. 

7. 6. Momentaneous Fluctuations Could Confirm dyn4 

This same review [131] then attracts attention to the mea- 
ningful information hidden in the momentaneous fluctua- 
tions in cognitive and physical effort. Albeit the speed-accu- 
racy trade-off is pervasive, it becomes hidden in the context 
of higher rewards, by which both increase. In psychiatry in- 
stead the new validated concentration deficit disorder (CDD), 
former „sluggish cognitive tempo“, which has replaced most 
of ADHD-inattentive type, is not an executive disorder, but 
strangely reminiscent of a coupled inertia of T~, A~, and M~, 
related to depression and refraining from higher intensities in 
all three dimensions [132]. 

In dyn4 accurate distances are a result of 5+DA~, while 
4DT~ is related to appropriations in a vage future and their 
speed. Reward-induced invigoration along the Appropria- 

tion-axis „from Need to Pursuit“ in fact causes a symmetric 
intensification in T~, A~ and M~. Through this analogy we 
start to consider coupled, usually skewed, simple harmonic 
oscillators (SHO as a mass-on-a-spring with (-k/m)∙x = 
d2x/dt2 obeyed by sin(x) or cos(x)) as a biaxial [133], not 
mono-axial [134] model of „mood swings“. Hereby the 
above momentaneous fluctations of T~, A~, and M~ are 
modeled, which putatively correspond to the three „af- 
fective“ CSTCs. The CSTCs by virtue of their direct and 
(negative) indirect paths, in fact could be approximated as 
SHOs. 

Silvain Tomkins modeling of emotions as analogue am- 
plifiers of intensity and its first derivative over time with as 
prime role for muscle sensibility [135] here appears as very 
much to the point and compatible with dyn4. 

7.7. Biopersonology and dyn4-TAM 

While dyn4-TAM can probably be best mapped to a bio- 
amine-centered model of personality e. g. by Richard Depue 
[136], rapidly-acting ketamine-related or cholinergic anti- 
depressants have deviated attention from these systems (see 
7.5.). 

The specifically cholinergic molecular loss of function in 
STs [137] points strongly to the fact that cholinergic systems 
support anti-distractive cognitive control, whilst also 
allowing for attentive shifts with reorientation to cues and 
cue-re- sponsive action [113], like approaching the goal! 

Present psychological research on humans applies the 
concept of „ST-to-GT“ [107] and could use cross-validating 
tests for „UC-to-CO“ [1,46], while studying resistance to 
temptation or effort [106] would also test the here exposed 
hypothesis of homology. 

7.8. Mast Cells at the Reins of Appropriation? 

As to the own hypothesis, that the anatomical convergence 
of the three “affective” CSTCs at the thalamus might provide 
access especially for mast cells [138] intruding along the 
posterior arteries to modulate subcortical logistics, some few 
observations concur. Since STs are high in ventral HC myo- 
inositol, and hereby dopaminergically incentivize Nac in 
Pavlovian approach [139], putative roles both of hippo- 
campal mast cells [140] and of lithium [141], inhibiting 
IMPase [142], emerge, which hint to how the convergent 
framework dyn4 could operate in affective disorders. In fact 
cues become less incentive under ketamine [143], the 
miracle antidepressant pro-drug which acts by upregulating 
AMPA-receptors [144], which happens to incite [145] or to 
calm mast cells [146], but does not affect midbrain DA 
[147]. 

The latest review on STs [148] points also to the lateral 
habenulae (LHb) [149-151], and thereby, see below, also to 
mast cells (MCs), as a part of the food-cue-induced “motive 
circuit”, and its rapid adaptions. Within a larger network 
[152] they help in attributing salience [153] to the point, that 
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the LHb drives the VTA and SNr during RPE [154]. The 
LHb specifically act as indirect [155,156] strong inverse 
modulators [153] of the DA of the midbrain’s SEEKING 
system [157], and the playfulness of STs is supported by the 
centrality of LHb for social play [158, 157]. Conversely LHb 
and the medial habenula (MHb) are sensitive in the non- 
depressed to present [159] or future punishment [160] up to 
learned helplessness [161, 162], produce vegetative costs of 
emotions [163], and shrink [164, 165] especially in bipolar 
depression. Drugs inhibiting LHb reverse resistant 
depression [166]. 

As to MCs [58] they rapidily intrude after psychosocial 
events as acute activators e.g. into the LHb after repeated 
defeats [167], and with parenthood [168] into the reinforcing 
MHb of which silencing is aversive [169]. Mastocytosis 
finally is depressiogenic [170]. 

8. Conclusions 
An essay “takes things from many sides without compre- 

hending it fully.”[171], and as a vivid genre of troubled times 
it takes high risks to fall victim to its own boldness by loose- 
ning cognitive control. Furthermore Karl Jaspers justly 
warned: “Theorizing has an atmosphere of its own.” [172]. 
Progress in fact mostly, but not entirely, occurs through pain- 
staking continuity of endeavors critical in seeking better 
lives, and the Ann Kelley’s saga, certainly testifies to this. In 
the commemorative volume to her and also by her lab, which 
added successes with the STs and GTs rats, John D. Sala- 
mone contributed insights into the central role of Nac in brin- 
ging about effort-related choices [173]. This would also 
explain the common failures of RPE to behave in 
schizophrenia as computational psychiatrist, which build 
around it, were hoping for [176], and in this their “orthogonal” 
tautological Bayesian relations, which are akin to any 
reciprocal falsify- cation couple between theory and 
hypothesis, will not be of any comfort. Till date highly 
erudite accounts on “cues” [177] can still make it without 
“effort”, but the two lines of enquiry will not continue on 
parallel tracks with little convergence for long. 

The conceptual skipping of Thought and Intention in the 
Perception-Action models, even in their most erudite form 
[178] remains puzzling (to me), while the intricacies of rela- 
tional cognitive processing explore the limits of complexity 
of Thought [179] - till now without a factoring-in of the 
“UC-to-CO”-algorithm. The Intention to think, act, and feel 
is certainly enriched by their “economical” braking by effort, 
and the second response component in midbrain DA-neurons, 
which codes reward value as a “numeric, quantitative utility 
prediction error”, [180] could be a predictor of opportunity 
of less effort, and not of utility (worth), since it starts early 
enough to prevent “confusion with unrewarded stimuli and 
objects.” 

Especially in the NAc DA participates in effort-based 
choices among often many opportunities in the surrounds of 

the niche. Variability in active effort has been referred most- 
ly to fluctuations in subjective anticipated effort [131]. 
Research on emotional effort is centered on the control or 
suppression of emotions, and maybe today research on the 
neuroeconomy of confidence [181] is most on track in this 
area, since confidence in a cheap simple heuristic model 
comes at a rarely relevant [39] price of error. Also dyn4 
knows the processes of Doubt or Confidence [2: Table 1] 
dealing with opposite interactions between model- 
ing-in-4DT and Mood. The proposal that the incentivity of 
such cues are about specific hope, that the expected required 
effort will be discounted, and that Hope in dyn4 is the pas- 
sage from Need-tam to Interest-TaM in dyn4, is compatible 
with positive psychotherapy using incentive hope. 

Survival depends on movement, movement on motivation, 
and motivation on cost-benefit analyses of active effort ex- 
pressed in passively anticipated effort? Optogenetics on 
freely moving rodents will soon tell us more about this [181]. 
The SMA‘s feeding of muscle contraction into subjective 
effort [129] reminds us of the cutaneo-muscularly felt 
emotion theory of Silvain S. Tomkins [135] or recalls 
oro-facial mimics of „li(c)king“ [182] or the clenching of 
teeth to in- crease active effort, but it can’t sustain the claim, 
that the felt quality of the „SEEKING“ system model would 
allow to collapse the duality of learning in approach [157]. 

A recent assembly of research on circuits of positive emo- 
tions [184], to which this paper originally was submitted as 
an elaboration of a poster, confirmed, that the important, be- 
cause extremely basic hypothesis of a reinforcement or re- 
versal of the prime motivator (Un-)Certainty-orientation of 
Richard M. Sorrentino [1,46] by valenced emotion, which 
reveals a constituting evolutionary link between cognition 
and emotion, and the mast cells are just only starting to 
attract noticeable interest in the mainstream of neurosciences. 
Therefore pioneers in ST-research [126] and MC-research 
related to the brain [58], Rae Silver, now leader in circadian 
rhythms, not fully by chance are immediate neighbors in a 
monograph on motivation [185], and the links likely also run 
via “clocked” [186] and “clocking” [187] MCs in brain [58] 
and other tissue [188] in relation to bio-economic metabo- 
lism [189] and its central “subjective” variable effort [190]. 
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i Abbreviation codes: 
1. Neuroanatomy, Neurochemistry: ACC Anterior cingulate cortex; aINS 
Anterior insula; CSTC: Cortico-striato-thalamo-cortical circuits; Nac 
Nucleus accumbens; OFC Orbitofrontal cortex; vmPFC  ventromedial 
Pre-Frontal Cortex. PVT paraventricular nucleus of thalamus. MC Mast cell; 
HA Histamine; NMDAR N-methyl-D-aspartate receptor for glutamate with 
e.g. NR2B-subunits; SNr substantia nigra (basal ganglia). 
2. Psychology / Ethology: UOs Uncertainty-Oriented Individuals; COs 
Certainty-Oriented Individuals (Richard M. Sorrentino); UO-versus-CO 
Uncertainty versus Certainty “orientation”; GTs goal-trackers; GT 
goal-tracking; STs sign-trackers; ST sign-tracking.  
CS conditioned stimulus; US unconditioned stimulus. MBL Model-based 
learning; MFL Model-free learning. 
3. Neuro-economics: Effme maximal expendable effort; RPE Reward 
Prediction Error; PE (Effme) RPE normalized to the present discount of 
previous maximum expendable effort. 
4. dyn4-TAM modeling. dyn4TAM modified classic mixed bipolar disorder 
model; T~, 4DT symbolic 4-dimensional cognitive processing; 4D-Thought 
symbolic 4-dimensional cognitive processing; A~, 5+DA intuitive 5- or 
higher-dimensional cognitive processing; 5+D-Action intuitive 5- or 
higher-dimensional cognitive processing; Mood dichotomic negative or 
positive valence; M~ dichotomic negative or positive valence; T/t, A/a, M/m 
dichotomic realizations of T, A, and M in triples. P{AT} Perception, i.e. 
transitions from 5+-Action to 4D-Thought; I{TA} Intention, i.e. 
transitions from 4D-Thought to 5+-Action; AW, AWs Appropriation Wave, 
Appropriation Waves; SHO Simple Harmonic Oscillator; Worry-T~a~m~ 
Worry with much Thought, low Action and Mood. 

 

                                                           


